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Structure of the presentation

Explore (some) interesting phenomena in random k-SAT

Infer general ideas (and some theorem) for a standard model

Ask whatever you want
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Sources

On random k-SAT:
→ M. Mézard, G. Parisi, and R. Zecchina, ’Analytic and Algorithmic

Solution of Random Satisfiability Problems’, Science 2002

→ A. Montanari, D. Shah, ‘Counting good truth assignments of random

k-SAT formulae’, SODA 2007

→ F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian,

L. Zdeborova ‘Gibbs States and the Set of Solutions of Random

Constraint Satisfaction Problems’, PNAS 2007

Formalization:
→ A. Dembo and A.Montanari, In preparation [DM07]
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k-satisfiability

n variables: x = (x1, x2, . . . , xn), xi ∈ {0, 1}

m k-clauses

(x1 ∨ x5 ∨ x7) ∧ (x5 ∨ x8 ∨ x9) ∧ · · · ∧ (x66 ∨ x21 ∨ x32)

Hereafter k ≥ 4 (ask me why at the end)
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Uniform measure over solutions

x3

x1

x6

x4

x2

x5

x7

x

x

x

8

9

10

← variables xi ∈ {0, 1}

← clauses, e.g. (x5 ∨ x7 ∨ x9 ∨ x10)

F = · · · ∧ (xi1(a) ∨ x i2(a) ∨ · · · ∨ xik (a))︸ ︷︷ ︸
a-th clause

∧ · · ·

µ(x) =
1

Z

M∏
a=1

ψa(xi1(a), . . . , xik (a))
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µ(x) ⇔ Set of solutions S
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Random k-satisfiability

Each clause is uniformly random among the 2k
(n
k

)
possible ones.

n,m→∞ with α = m/n fixed.
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‘Standard model’

x1

x2 x3 x4

x5

x6

x7x8x9

x10

x11

x12

G = (V ,E ), V = [n], x = (x1, . . . , xn), xi ∈ X

µ(x) =
1

Z

∏
(ij)∈G

ψij(xi , xj) .
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‘Standard model’ (assumptions)

1. G has bounded degree.

2. G has girth larger than 2`
(with ` = `(n)→∞).

3. ψmin ≤ ψij(xi , xj) ≤ ψmax uniformly.

Not really fulfilled by random k-SAT but . . .
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Pure state/cluster decomposition
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‘Exponentially many clusters’

What does this mean?
[Mossel, Mézard/Palassini/Rivoire (2005), . . . . . . ]
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A toy model: Random sub-cubes in {0, 1}n
[from an idea by Dimitris Achlioptas]

N = 2nΣ0 clusters: S = ∪N
a=1Sa

{Sa} iid cubes with ‘centers’ x (a) ∈ {0, 1, ∗}n:
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How shall I construct one cluster?

Sa =
{

x ∈ {0, 1}n : xi = x
(a)
i

}

x
(a)
i =


∗ prob p ,
1 prob (1− p)/2 ,
0 prob (1− p)/2 ,
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Most of clusters have size 2np, but...

#{clusters of size 2ns} .= 2nΣ(s)

Σ(s) = Σ0 − D(s||p) if ≥ 0 and. . .

-0.2
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 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1

s

Σ(s)

(d1RSB)

Most of solutions are in 2nΣ(s∗) clusters of size 2ns∗ , s∗ > p.
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Most of clusters have size 2np, but...
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Enough with toys. . .
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Pure states decomposition in k-SAT

αd(k) αc(k) αs(k)

[Biroli et al. 01, Mézard et al. 02, Mézard et al. 05, Achlioptas et al. 06,

KMRSZ (us) 06]

The 3 scenarios seem universal (coloring, codes, . . . )
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Pure states decomposition in k-SAT

αd(k) αc(k) αs(k)

RS (1) d1RSB (3) 1RSB (2)

αd(k) = (2k log k)/k + . . . (αd(4) ≈ 9.38)

αc(k) = 2k log 2− 3
2 log 2 + . . . (αc(4) ≈ 9.547)

αs(k) = 2k log 2− 1
2(1 + log 2) + . . . (αs(4) ≈ 9.93)

[Achlioptas, Naor, Peres, 2005, αs(k) = 2k log 2 + O(k)]
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Howx to formalize this in general?

Definition

It is the ‘finer’ partition Ω1 ∪ · · · ∪ ΩN = X n, such that

µ(∂εΩq)

(1− µ(Ωq))µ(Ωq)
≤ exp{−C (ε)n} .

where C (ε) > 0 for ε small enough.

[the conductance of µ is exponentially small]

µ( · ) =
N∑

q=1

wqµq( · ) .
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Pure states: 3 scenarios

Let N(δ) the minimal number of states with measure ≥ 1− δ

[RS] N(δ) = 1

[d1RSB] N(δ) = en(Σ±ε)

[1RSB] N(δ) = Θ(1) [→ unbounded random variable]
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Relation with Bethe-Peierls approximation
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Bethe-Peierls ‘approximation’

Definition

A ‘set of messages’ (aka cavity fields) is a collection {νi→j( · )}
indexed by directed edges in G, where νi→j( · ) is a distribution
over X .
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Given F ⊆ G , diam(F ) ≤ 2`, such that degF (i) = degG (i) or ≤ 1

νF (xF ) ≡ 1

W (νF )

∏
(ij)∈F

ψij(xi , xj)
∏
i∈∂F

νi→j(i)(xi ) .
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Bethe states

Definition

A probability distribution ρ on XV is an (ε, r) Bethe state, if there
exists a set of messages {νi→j( · )} such that, for any F ⊆ G with
diam(F ) ≤ 2r

||ρF − νF ||TV ≤ ε .
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Consistency Condition → Bethe Equations

Proposition (DM07)

If ρ is a (ε, 2)-Bethe state with respect to the message set
{νi→j( · )}, then, for any i → j

||νi→j − Tνi→j ||TV ≤ Cε ,

Tνi→j(xi ) =
1

zi→j

∏
l∈∂i\j

∑
xl

ψil(xi , xl)νl→i (xl) .

Belief Propagation

For t = 0, 1, . . .

ν
(t+1)
i→j = Tν(t)

i→j

Andrea Montanari Gibbs States and Message Passing Algorithms



Consistency Condition → Bethe Equations

Proposition (DM07)

If ρ is a (ε, 2)-Bethe state with respect to the message set
{νi→j( · )}, then, for any i → j

||νi→j − Tνi→j ||TV ≤ Cε ,

Tνi→j(xi ) =
1

zi→j

∏
l∈∂i\j

∑
xl

ψil(xi , xl)νl→i (xl) .

Belief Propagation

For t = 0, 1, . . .

ν
(t+1)
i→j = Tν(t)

i→j

Andrea Montanari Gibbs States and Message Passing Algorithms



3 Scenarios

µ(x) =
1

Z

∏
(ij)∈G

ψij(xi , xj) .

[consider a sequence of models with n→∞]

(RS) µ( · ) is a Bethe state and cannot be further decomposed.

(1RSB) µ( · ) is not a Bethe state but is a convex combination of
Bethe states (↔ clusters).

(d1RSB) µ( · ) is a Bethe state but can also be decomposed as a
convex combination of Bethe states(↔ clusters).
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Relation with correlation decay
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Relation with correlation decay: Notation

i ∈ {1, . . . ,N} uniformly at random.

B(i , r) ball of radius r and center i .

x∼i ,r = { xj : j 6∈ B(i , r) }.
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Relation with correlation decay: Definitions

Uniqueness:

sup
x ,x ′

∑
xi

∣∣µ(xi |x∼i ,r )− µ(xi |x ′∼i ,r )
∣∣→ 0

[cf. Tatikonda, Gamarnik, Bayati,. . . ]

Extremality: ∑
xi ,x∼i,`

|µ(xi , x∼i ,r )− µ(xi )µ(x∼i ,r )| → 0

[cf. Peres, Mossel]

Concentration:∑
xi(1)...xi(k)

∣∣µ(xi(1), . . . , xi(k))− µ(xi(1)) · · ·µ(xi(k))
∣∣→ 0
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Relation with correlation decay

RS ⇔ Extremality

d1RSB ⇔ No extremality; Concentration

1RSB ⇔ No extremality; No concentration

[First rigorous under a suitable (WEAK) interpretation of two sides]
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First steps

Theorem (Tatikonda-Jordan 02)

If µ is unique ‘with rate δ( · )’ then it is an (ε, r) Bethe state for
any r < ` and ε ≥ Cδ(`− r), with respect to the message set
output by belief propagation.

Theorem (DM07)

If µ is extremal ‘with rate δ( · )’ then it is an (ε, r) Bethe state for
any r < ` and ε ≥ Cδ(`− r).

Andrea Montanari Gibbs States and Message Passing Algorithms



First steps

Theorem (Tatikonda-Jordan 02)

If µ is unique ‘with rate δ( · )’ then it is an (ε, r) Bethe state for
any r < ` and ε ≥ Cδ(`− r), with respect to the message set
output by belief propagation.

Theorem (DM07)

If µ is extremal ‘with rate δ( · )’ then it is an (ε, r) Bethe state for
any r < ` and ε ≥ Cδ(`− r).

Andrea Montanari Gibbs States and Message Passing Algorithms



What happens in k-SAT?

αu(k) αd(k) αc(k) αs(k)

RS (1) d1RSB (3) 1RSB (2)

αu(k) = (2 log k)/k + . . . [rigorous!, MS07]

αd(k) = (2k log k)/k + . . . (αd(4) ≈ 9.38)

αc(k) = 2k log 2− 3
2 log 2 + . . . (αc(4) ≈ 9.547)

αs(k) = 2k log 2− 1
2(1 + log 2) + . . . (αs(4) ≈ 9.93)
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Message passing algorithms
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Implications

BP can work in the RS and d1RSB regimes.

BP cannot work in the 1RSB regime.
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Sequential BP search

N = 5 · 10
3

N = 10
4

N = 2 · 10
4

4-SAT α = 9.5

4-SAT α = 9

fraction of fixed variables

s

10.80.60.40.20

0.1

0.08

0.06

0.04

0.02

0

Finds a solution with positive probability for α < αc(k).
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Conclusion

Many (difficult!) open problems.

Theory of Gibbs measures (locally Markov processes) on (a
class of) finite graphs.
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